Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces
نویسندگان
چکیده
منابع مشابه
Quasicone Metric Spaces and Generalizations of Caristi Kirk's Theorem
Cone-valued lower semicontinuous maps are used to generalize Cristi-Kirik’s fixed point theorem to Cone metric spaces. The cone under consideration is assumed to be strongly minihedral and normal. First we prove such a type of fixed point theorem in compact cone metric spaces and then generalize to complete cone metric spaces. Some more general results are also obtained in quasicone metric spaces.
متن کاملGeneralizations of -Fixed Point Theorems in Partial Metric Spaces
We consider the dualistic partial metric spaces on a set X, and we give necessary conditions for existence of fixed point and −fixed point for some maps. AMS Subject Classification: 54H25; 54E50; 54E99; 68Q55
متن کاملFIXED POINT THEOREM ON INTUITIONISTIC FUZZY METRIC SPACES
In this paper, we introduce intuitionistic fuzzy contraction mappingand prove a fixed point theorem in intuitionistic fuzzy metric spaces.
متن کاملA common fixed point theorem on ordered metric spaces
A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.
متن کاملBalls in generalizations of metric spaces
This paper discusses balls in partial b-metric spaces and cone metric spaces, respectively. Let (X ,pb) be a partial b-metric space in the sense of Mustafa et al. For the family of all pb-open balls in (X ,pb), this paper proves that there are x, y ∈ B ∈ such that B′ B for all B′ ∈ , where B and B′ are with centers x and y, respectively. This result shows that is not a base of any topology on X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2011
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2011-4